A generalized-α method for integrating the filtered Navier-Stokes equations with a stabilized finite element method
نویسندگان
چکیده
A generalized-α method is developed and analyzed for linear, first-order systems. The method is then extended to the filtered Navier-Stokes equations within the context of a stabilized finite element method. The formulation is studied through the application to laminar flow past a circular cylinder and turbulent flow past a long, transverse groove. The method is formulated to obtain a second-order accurate family of time integrators whose high frequency amplification factor is the sole free parameter. Such an approach allows the replication of midpoint rule (zero damping), Gear’s method (maximal damping), or anything in between.
منابع مشابه
A Stabilized Nonconforming Quadrilateral Finite Element Method for the Generalized Stokes Equations
In this paper, we study a local stabilized nonconforming finite element method for the generalized Stokes equations. This nonconforming method is based on two local Gauss integrals, and uses the equal order pairs of mixed finite elements on quadrilaterals. Optimal order error estimates are obtained for velocity and pressure. Numerical experiments performed agree with the theoretical results.
متن کاملVariational multiscale stabilized FEM formulations for transport equations: stochastic advection-diffusion and incompressible stochastic Navier-Stokes equations
An extension of the deterministic variational multiscale (VMS) approach with algebraic subgrid scale (SGS) modeling is considered for developing stabilized finite element formulations for the stochastic advection and the incompressible stochastic Navier-Stokes equations. The stabilized formulations are numerically implemented using the spectral stochastic formulation of the finite element metho...
متن کاملLocal projection finite element stabilization for the generalized Stokes problem
We analyze pressure stabilized finite element methods for the solution of the generalized Stokes problem and investigate their stability and convergence properties. An important feature of the method is that the pressure gradient unknowns can be eliminated locally thus leading to a decoupled system of equations. Although stability of the method has been established, for the homogeneous Stokes e...
متن کاملScientific Flow Field Simulation of Cruciform Missiles Through the Thin Layer Navier Stokes Equations
The thin-layer Navier-Stokes equations are solved for two complete missile configurations on an IBM 3090-200 vectro-facility supercomputer. The conservation form of the three-dimensional equations, written in generalized coordinates, are finite differenced and solved on a body-fitted curvilinear grid system developed in conjunction with the flowfield solver. The numerical procedure is based on ...
متن کاملA Variational Multiscale Stabilized Finite Element Method for Stochastic Advection-Diffusion and Stochastic Incompress- ible Flow
An extension of the deterministic variational multiscale (VMS) approach with algebraic subgrid scale (SGS) modeling is considered for developing stabilized finite element formulations for the linear stochastic scalar advection-diffusion equation and the incompressible stochastic Navier-Stokes equations. The stabilized formulations are numerically implemented using the spectral stochastic formul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000